
RESEARCH

Received: 21 August 2025 / Revised: 5 November 2025 / Accepted: 7 November 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

	
 Xiaofei Zhu
zxf@cqut.edu.cn

Yaochen Li
lyc@stu.cqut.edu.cn

1	 College of Computer Science and Engineering, Chongqing University of Technology, 
Hongguang Avenue, 400054 Chongqing, China

Frequency-aware experts with multi-stage fusion  
for multimodal sentiment analysis

Xiaofei Zhu1 · Yaochen Li1

Journal of Intelligent Information Systems
https://doi.org/10.1007/s10844-025-01006-7

Abstract
Multimodal Sentiment Analysis (MSA) aims to infer human affective states by integrating 
information from diverse modalities such as text, audio, and vision. Despite recent advances 
in representation learning and fusion strategies, existing methods often overlook the inherent 
frequency characteristics within each modality–particularly in audio and visual signals–where 
task-relevant information may reside in distinct spectral bands. To address this limitation, we 
propose a novel Frequency-Aware Experts and Multi-Stage Fusion (FEMF) framework. Spe-
cifically, we introduce a frequency-aware expert module that decomposes modality-private 
features into high- and low-frequency components via Discrete Fourier Transform (DFT), 
and processes them through dedicated expert networks before adaptive fusion. Additionally, 
we design a multi-stage integration pipeline that incorporates shared-private disentanglement, 
multi-query modality interaction, and confidence-aware fusion with hierarchical prediction, 
enabling flexible and robust representation learning across modalities. Extensive experiments 
on CMU-MOSI and CMU-MOSEI benchmarks demonstrate that our approach achieves supe-
rior performance, validating the effectiveness and resilience of the proposed frequency-aware 
modeling paradigm. Codes are realised at https://github.com/L11yc/FEMF

Keywords  Multimodal Sentiment Analysis · Frequency-Aware Modeling · Mixture of 
Experts · Multi-Stage Fusion

1  Introduction

With the rapid proliferation of social media platforms, users increasingly express emotions 
through diverse modalities such as text, audio, and video. This has led to the rise of Multi-
modal Sentiment Analysis (MSA), which aims to infer human affective states by modeling 
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heterogeneous multimodal data sources (Wang et al., 2025a). MSA has demonstrated wide 
applicability in domains such as healthcare, social media monitoring, and human–com-
puter interaction (Yang et al., 2023a). Compared with unimodal approaches, MSA provides 
superior robustness and richer semantic understanding by leveraging complementary cross-
modal cues.

Early studies primarily relied on textual data, while the increasing availability of user-
generated videos has shifted attention toward fully exploiting multimodal representations. 
Recent works have investigated representation learning to improve the expressiveness and 
disentanglement of modality-shared and modality-specific features (Hazarika et al., 2020), 
employing strategies such as shared–private factorization, contrastive learning (Yang et al., 
2023a), and multitask learning (Yu et al., 2021). In parallel, fusion strategies have evolved 
from early concatenation to more expressive mechanisms, including tensor-based fusion 
(Zadeh et al., 2017a), convolutional and recurrent architectures (Sun et al., 2020; Huang et 
al., 2020), and cross-modal attention networks (Li et al., 2025a). However, most existing 
methods overlook intrinsic frequency characteristics within modalities: while audio sig-
nals exhibit rich temporal variations across frequency bands, visual and textual features 
often contain low-frequency semantic trends interspersed with sparse high-frequency fluc-
tuations. Directly modeling these heterogeneous frequency patterns in the original feature 
space may dilute task-relevant information and obscure subtle but crucial modality dynam-
ics (Ai et al., 2025).

To address these challenges, we propose FEMF, a Frequency-Aware Experts with Multi-
Stage Fusion framework for multimodal sentiment analysis. Motivated by the observation 
that different frequency bands encode distinct emotional cues—high-frequency components 
capturing abrupt emotional transitions and low-frequency ones reflecting stable affective 
trends (Cheng et al., 2025)—FEMF decomposes modality-specific features via Discrete 
Fourier Transform (DFT) into high- and low-frequency components, which are processed 
by specialized experts and adaptively fused to form enhanced representations. This fre-
quency-aware design preserves both global emotional consistency and transient variations, 
mitigating the semantic blurring caused by ignoring frequency cues. Moreover, FEMF inte-
grates shared–private disentanglement guided by cross-modal reconstruction to enhance 
multimodal representation learning and promote robust fusion.

Extensive experiments on CMU-MOSI and CMU-MOSEI benchmarks demonstrate the 
effectiveness and robustness of our approach. The results validate the utility of frequency-
aware expert modeling and highlight its potential for interpretable and resilient multimodal 
sentiment analysis.

The main contributions of this work are as follows: 

1.	 We present a comprehensive Frequency-Aware Experts with Multi-Stage Fusion 
(FEMF) framework comprising four key stages: shared–private disentanglement, fre-
quency-aware expert modeling, modality interaction, and confidence-aware fusion with 
hierarchical prediction. This structured pipeline enables expressive, interpretable, and 
robust multimodal representation learning.

2.	 We introduce a novel frequency-aware expert module that decomposes modality-pri-
vate features via DFT into high- and low-frequency components, which are processed 
by separate experts and adaptively fused to form enriched representations.
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3.	 Extensive experiments on CMU-MOSI and CMU-MOSEI show that FEMF outper-
forms strong baselines under both full-modality and missing-modality settings, vali-
dating the generalizability of frequency-aware modeling for multimodal affective 
understanding.

2  Related work

2.1  Disentangled multimodal representation learning

While disentangled multimodal representation learning has shown promise in separating 
shared and modality-specific information (Zhang et al., 2024a), existing approaches still 
face key challenges. Early symmetric methods (Hazarika et al., 2020) treat all modalities 
equally, overlooking modality dominance and often diluting strong cues such as language. 
Distillation-based frameworks like DMD (Li et al., 2023) and CorrKD (Li et al., 2024a) 
align global distributions but neglect fine-grained or hierarchical semantic consistency. 
Recent models, including What2Comm (Yang et al., 2023c) and Tailor (Zhang et al., 2022), 
further ignore dominant-modality-guided disentanglement, limiting performance under 
asymmetric information.

In summary, existing methods, though technically advanced, lack dominant modality 
awareness, effective filtering of redundant features, and semantic consistency across hier-
archies–highlighting the need for a disentanglement strategy that enhances key modalities 
while ensuring layered semantic alignment.

2.2  Mixture of experts

The Mixture of Experts (MoE) architecture has recently emerged as an effective paradigm 
for enhancing model capacity and representation learning in natural language processing 
(Lepikhin et al., 2021) and computer vision (Mustafa et al., 2022). A typical MoE consists 
of multiple expert subnetworks and a routing mechanism that dynamically selects relevant 
experts based on the input. Compared with static fusion models, MoE provides greater 
adaptability by allowing each expert to specialize in distinct subspaces while the router 
learns task-relevant expert selection (Mustafa et al., 2022). For instance, the Switch Trans-
former (Lepikhin et al., 2021) improves computational efficiency by routing tokens to a 
small subset of experts. Recent multimodal extensions design modality-specific experts 
and routing functions to determine their relative contributions. MoMKE (Xu et al., 2024), 
for example, employs a soft routing module to blend modality-specific and cross-modal 
representations, enabling the model to capture both unique and shared semantics across 
modalities.

Overall, the MoE-based architectures offer a promising alternative to conventional mul-
timodal fusion strategies. Their ability to perform dynamic expert selection, handle diverse 
input conditions, and exploit specialization makes them particularly suitable for complex 
multimodal tasks where static fusion mechanisms fall short.

1 3



Journal of Intelligent Information Systems

2.3  Fourier domain learning

Frequency-domain representations have recently gained attention as an effective means of 
capturing periodic and hierarchical patterns in multimodal signals. Unlike time-domain pro-
cessing, frequency-based modeling decomposes data into components with distinct spectral 
characteristics, enabling selective emphasis on stable or transient variations (Cheung et al., 
2020). This paradigm has proven valuable in computer vision for enhancing texture per-
ception and suppressing feature-map noise (Zhang et al., 2025, 2019), in natural language 
processing for modeling global semantics beyond sequential context (Ong & Khong, 2025), 
and in time-series learning for improving long-term dependency modeling and alleviating 
Transformer over-smoothing (Shi et al., 2024).

Recently, frequency-domain techniques have been extended to affective computing, 
where emotional signals inherently exhibit rich temporal–spectral structures (Ai et al., 
2025). For example, high-frequency speech cues often correspond to transient emotions 
like anger or surprise, whereas low-frequency contours capture stable affective states. Simi-
larly, facial expressions contain both rapid micro-expressions and gradual transitions across 
distinct spectral bands (Cheng et al., 2025). Motivated by these insights, our work integrates 
frequency-aware modeling into multimodal sentiment analysis to disentangle and exploit 
high- and low-frequency affective cues, thereby enhancing interpretability and robustness 
in emotion understanding.

2.4  Multimodal fusion methods

Multimodal fusion aims to construct high-quality joint representations through effective 
integration across modalities. Despite notable progress, existing methods still struggle to 
model the complex and heterogeneous nature of cross-modal interactions. Most approaches 
emphasize atomic-level correlations while overlooking composition-level and hierarchical 
semantic structures (Liu et al., 2024; Wu et al., 2025; Li et al., 2025b, 2024b). Attention-
based and graph-structured models capture local dependencies (Zhang et al., 2024b) but 
lack mechanisms for modeling hierarchical relationships across modalities. Moreover, 
modality-specific encoders often introduce redundant or irrelevant content–especially in 
visual streams–leading to noisy fused representations (Li et al., 2022). Although high-
capacity tensor or polynomial fusion frameworks offer richer expressiveness, they suffer 
from excessive computational cost and poor scalability (Zadeh et al., 2017b; Hou et al., 
2019). Even recent methods employing mutual information maximization, top-down feed-
back (Paraskevopoulos et al., 2022) fail to capture bidirectional semantic flow effectively.

Overall, current fusion strategies insufficiently model multimodal heterogeneity, struc-
ture, and hierarchy, motivating the need for a more flexible and interpretable fusion mech-
anism that captures both fine-grained and coarse-grained inter-modal relations. Recent 
studies have further explored dynamic weighting strategies to adaptively adjust modality 
importance (Feng et al., 2024). In contrast, our FEMF follows a widely accepted assumption 
that the text modality provides the most reliable and fine-grained emotional cues, thereby 
serving as the dominant modality to guide multimodal fusion (Xie et al., 2024; Shi et al., 
2025).
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3  Methods

3.1  Problem definition

In the MSA task, the input data consists of three modalities: text(t), audio(a), and vision(v). 
A multimodal utterance is represented as a triplet (xt, xa, xv), where xm ∈ RTm×dm  
denotes the sequence of modality m ∈ {t, a, v}; Tm is the sequence length, and dm is the 
feature dimension. Audio, text, and visual features are extracted by pre-trained wav2vec-
large (Schneider et al., 2019), DeBERTa-large (He et al., 2021), and MA-Net (Zhao et al., 
2021) (after MTCNN  (Zhang et al., 2016) face alignment), respectively. The prediction 
target is the sentiment score ŷ ∈ [−3, 3], where values greater than, equal to, and less than 0 
correspond to positive, neutral, and negative sentiments, respectively.

3.2  Feature disentanglement module

Each modality-specific representation xm obtained from pre-trained encoders is further 
decomposed into two complementary components. The modality-shared representation 
encodes information within a common latent space while enforcing distributional similar-
ity across modalities, thereby mitigating the heterogeneity gap and enabling more effective 
fusion. In contrast, the modality-private representation preserves modality-specific charac-
teristics that are essential for capturing unique information cues. Together, these compo-
nents are jointly optimized within a unified framework to balance cross-modal consistency 
and modality distinctiveness.

As shown in Fig. 1, We use a shared multimodal encoder Es and three separate unimodal 
encoders Eu

m, where m ∈ {a, t, v}, to learn the mapping representations, defined as follows:

	 xs
m = Es

(
xm

)
, xu

m = Eu
m

(
xm

)
� (1)

Shared multimodal encoder Es and three separate unimodal encoders Eu
m are composed of 

linear layers.
To reduce the discrepancy among the shared representations of the three modalities, we 

employ cosine similarity to quantify the differences, denoted as Lsim, between their respec-
tive distributions. Accordingly, within the shared representation space of all modalities, our 
objective is to minimize the following function:

	
Lsim = 1

3
∑

(i,j)∈P

[
1 −

⟨xs
mi

, xs
mj

⟩
∥xs

mi
∥ ∥xs

mj
∥

]
, P = {(t, a), (t, v), (a, v)}� (2)

Additionally, an orthogonal loss is introduced to guarantee that the modality-shared and 
modality-private representations focus on distinct attributes of the input data. This non-
redundancy is enforced by applying an orthogonality constraint between these two types of 
representations. The corresponding orthogonality loss is computed as follows:

	
Lorth = 1

3
∑

m∈{a,t,v}

⟨
xs

m, xu
m

⟩
� (3)
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⟨ , ⟩represents orthogonal operation. Although incorporating Lorth helps enforce separa-
tion between shared and private representations, there remains a risk that modality-specific 
encoders could learn trivial or uninformative solutions. To address this concern, we integrate 
a modality reconstruction loss, which encourages the hidden representations to retain essen-
tial information from each modality and accurately reflect their respective characteristics.

Since the text modality has the highest confidence level among the three modalities, we con-
catenate the modality-specific representation of each modality xu

m and the modality-shared rep-
resentation of the text modality xs

t  as the input to the single decoder Dm, where m ∈ {a, t, v}, 
to reconstruct the corresponding representation. The discrepancy between the original multi-
modal representation and its reconstructed counterpart is quantified as follows:

	 x̂m = Dm

(
xs

t , xu
m

)
� (4)

	
Lrecon = 1

3
∑

m∈{a,t,v}

MSE
(
x̂m, xm

)
� (5)

To ensure that the reconstructed modal representation retains the emotional semantic infor-
mation of the original modality, we introduce an emotional consistency constraint mech-
anism to encourage the original representation and its reconstructed version to remain 
consistent in terms of emotional semantics. Inspired by the concept of cyclic consistency 
in the field of generative models (Wang et al., 2025b), we employ a cyclic consistency loss 
Lcyc to enhance the quality and robustness of representation reconstruction.

Specifically, the reconstructed modal representation is fed into its corresponding dedi-
cated encoder for re-encoding, thereby regressing to its original modal unique representa-
tion. The difference between the reconstructed representation and the unique representation 
is defined as the cyclic consistency loss, as shown in the following formula:

Fig. 1  Overview of the proposed FEMF framework. The framework follows a pipeline of disentangle-
ment, frequency-aware MoE, Modality-Interaction Module and Hierarchical Predictions Module
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Lcyc =

∑
m∈{a,v}

∥Eu
m(x̂m) − xu

m∥2
2� (6)

Among them, x̂m denotes the reconstructed modal representation, Eu
m denotes the private 

encoder of modality m, and xu
m denotes the private representation of modality m. This loss 

term effectively ensures that the reconstruction path remains semantically consistent with 
the original modality, thereby enhancing the ability of the model to retain emotional seman-
tics.Furthermore, since the reconstruction of the text modality is performed only within this 
modality, we did not constrain the text modality with this loss.

Finally, we integrate the above constraints to construct the overall loss function of the 
module, which is defined as follows:

	 Ldis = Lsim + Lorth + Lrecon + Lcyc� (7)

This work uses the private features of each modality as the main input for subsequent mod-
ules. Shared features are primarily used for alignment and supervision, while private fea-
tures contain more modality-specific information such as voice intonation, visual details, or 
language style differences. Using private features as input for subsequent modules enhances 
complementary expression between modalities, improves the model’s ability to model fine-
grained emotional differences, and thereby enhances the final sentiment analysis perfor-
mance and robustness.

3.3  Frequency-aware MoE

To further enhance the modeling capabilities of each modality representation, we decom-
poses each modality representation into low-frequency and high-frequency components, 
as shown in Fig. 2. This design is inspired by the observation that emotional semantics 
may simultaneously exhibit global (low-frequency) trends and sudden local changes (high-
frequency cues).

Discrete Fourier Transform (DFT)  Formally, we apply the real-valued Discrete Fourier 
Transform (DFT) along the temporal dimension to project the signal into the frequency 
domain.The Discrete Fourier Transform (DFT) serves as a fundamental tool in digital 
signal processing (DSP), enabling the transformation of discrete-time signals from the 
time domain into the frequency domain. We denote the DFT operation as a linear map-
ping:F : RN → CN , with its inverse–known as the Inverse Discrete Fourier Transform 
(IDFT)–represented as: F−1 : CN → RN , Applying F  to a real-valued sequence X ∈ RN  
corresponds to multiplying X by a DFT matrix F . Each row of this matrix is a Fourier basis 
vector fj ∈ RN , defined as:fj =

[
e2πi(j−1)·0, e2πi(j−1)·1, . . . , e2πi(j−1)(N−1)]T

/
√

N , 
where i is the imaginary unit, and j ∈ {1, ..., N}. Let the frequency spectrum of the signal 
be: sx = F(x) ∈ CN . We divide the spectrum into low- and high-frequency components: 
Low-frequency part slfcx ∈ Cc and High-frequency part shfc

x ∈ CN−c. This decomposition is 
implemented via a hyperparameter c from our FourierLayer, and is applied to each modal-
ity’s private representation independently:

	 xlow
m , xhigh

m = FourierLayer (xu
m) , m ∈ {a, v, t}� (8)

1 3



Journal of Intelligent Information Systems

Modality experts  Each frequency band obtained from the previous module is processed by 
a dedicated frequency-specific modality expert. Each expert comprises a stack of Q Trans-
former Encoder blocks–each containing a multi-head self-attention layer and a feed-forward 
network, followed by residual connections and layer normalization. Unless otherwise speci-
fied, Q=4.

	 ŷf
m = FCf

m

(
Transformerf

m

(
xf

m

))
, f ∈ {low, high}, m ∈ {a, v, t}� (9)

The training objective for each expert is to minimize the mean squared error (MSE) between 
its prediction and the ground truth:

	 Lf
train = MSE

(
y, ŷf

m

)
, f ∈ {low, high}, m ∈ {a, v, t}� (10)

After training, the parameters of all modality-frequency experts are frozen and reused in the 
downstream model. This design ensures that each expert captures discriminative patterns 
unique to either the stable (low-frequency) or dynamic (high-frequency) components of 
modality-specific sentiment signals.Through this process, each modality–frequency expert 
develops the ability to reinterpret input representations from its own modality viewpoint and 
integrate complementary cues learned from other modalities, forming a unified cross-modal 
understanding. Given the low-frequency component xlow

m  of the m-th modality, we feed it 
into every expert ei(·) to obtain modality expert-specific embeddings as follows:

	 xm
i = ei

(
xlow

m

)
� (11)

Here, ei(·) denotes the expert corresponding to the i-th modality (audio, visual, or text). 
This process allows each expert to reinterpret the input feature from its own modality per-
spective, producing a set of cross-expert representations xm

i  that capture complementary 
knowledge from multiple modalities.

Fig. 2  Overview of the Frequency-Aware MoE module. Each modality feature is decomposed into low- 
and high-frequency components via DFT, processed by frequency-specific experts, and fused adaptively 
through a soft router guided by the text modality
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To further enhance representation expressiveness, we introduce a lightweight Soft 
Router, which is a two-layer Multilayer Perceptron (MLP), we treat the text modality as a 
high-confidence semantic anchor due to its empirical reliability in sentiment understanding. 
the router takes both the current modality feature and the text feature as input to estimate 
the contribution scores over all experts, achieving dynamic optimization and rebalancing of 
contributions from different experts (using low-frequency signals as an example):

	 Sm = [sm
a , sm

v , sm
t ] = MLP(xlow

m , xlow
t ), m ∈ {a, v, t}� (12)

	 wm
i = softmax(sm

i ), m ∈ {a, v, t}� (13)

	
X low

m =
∑

i∈{a,v,t}

wm
i · xm

i , m ∈ {a, v, t}� (14)

which wm
i  is the weight of the output representing of each expert. X low

m  is the characteristic 
of low-frequency information of mode m.

Similarly, we can obtain the representation of the high-frequency information of mode m 
after expert processing Xhigh

m .
Subsequently, we introduce a hyperparameter α ∈ [0, 1] to control the contribution of 

high-frequency and low-frequency components, and fuse them through a weighted summa-
tion as follows:

	 Rm = α · X low
m + (1 − α) · Xhigh

m � (15)

Unlike conventional feature partitioning that splits latent dimensions arbitrarily, our DFT-
based decomposition performs signal-level separation grounded in the temporal–spectral 
characteristics of multimodal data. Through the Discrete Fourier Transform (DFT), each 
modality is divided into low-frequency components representing stable contextual trends 
and high-frequency components capturing transient emotional variations. This principled 
spectral separation enables frequency-specific experts to model complementary dynam-
ics guided by interpretable frequency semantics, rather than arbitrary feature subsets. The 
resulting frequency-aware representations are then fed into cross-modal attention and hier-
archical prediction layers to enhance semantic alignment and decision robustness.

3.4  Modality-interaction module

After generating modality-specific representations refined by the frequency-aware expert 
mechanism. We introduce a multi-head attention-based fusion module as shown in Fig. 
3 that explicitly models the interactions between different modalities in a pairwise and 
sequential manner. This mechanism iteratively aligns each target modality with the comple-
mentary information from the remaining modalities using stacked bidirectional multi-head 
attention layers.

For each modality, the fusion process is performed in two stages. First, the target modal-
ity attends to another modality using its own features as queries and the other modality as 
key–value pairs. The resulting features are then fused with the third modality in the same 
manner. This staged attention mechanism enables each modality to progressively incorpo-
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rate semantic cues from others. The process is applied symmetrically across all modalities 
and repeated over T stacked layers to facilitate deeper and more structured cross-modal 
interactions. Unless otherwise specified, T is treated as a tunable hyperparameter.

Taking the textual modality as an example, let Rj−1
t  denote the textual representations 

at layer j − 1, and let Ra, Rv  be the audio and visual modality features. The fusion process 
at layer j includes:

Text-audio fusion  The text features are first used as query vectors, while audio features 
are used as keys and values in a multi-head cross-attention block, modeling text-audio 
interaction.

	
Aj

ta = Softmax

(
Rj−1

t W ta
Q (RaW ta

K )⊤
√

d

)
· (RaW ta

V )� (16)

	 Rj
ta = LayerNorm(Rj−1

t + Aj
ta)� (17)

where W ta
Q , W ta

K , W ta
V  are projection matrices.

Regarding the fusion of visual aspects, similar to the previous step, the fused text-audio 
features are used as queries, while the visual features are used as keys and values in the 
second cross-attention block to model text-visual interactions, and finally the fused features 
Rj

tav  are obtained.

Feedforward refinement  A feed-forward network (FFN) with residual connection and layer 
normalization is applied to refine the fused features and enable deeper representations.

	 MLP(Rj
tav) = ReLU(Rj

tavW1 + b1)W2 + b2� (18)

	 Rj
t = LayerNorm(Rj

tav + MLP(Rj
tav))� (19)

Fig. 3  Modality-Interaction Module. The module is symmetrically three-branched, with one modality per 
branch as a query, illustrated in the figure with a text modality
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where W1, W2 are projection matrices. b1, b2 are bias parameters.

3.5  Hierarchical predictions module

To further enhance the discriminative capacity of each modality and the robustness of final 
decisions, we design a hierarchical prediction module that integrates both modality-specific 
and multimodal fusion predictions.

Specifically, for each refined modality representation Rm, where m ∈ {a, v, t} , we 
apply a two-layer feed-forward network with residual connections to obtain the high-level 
representation, then, a modality-specific prediction is obtained by applying a sigmoid-acti-
vated projection:

	 hm = Rm + FFN(Rm), ŷm = FC(hm)� (20)

To leverage the synergy among different modalities, we concatenate the refined modality 
representations to form a joint feature, and compute a fusion-based prediction:

	 Rjoint = [Ra; Rv; Rt], ŷjoint = FC(Rjoint)� (21)

To achieve adaptive fusion of hierarchical predictions, we use learnable fusion to calculate 
weights. Specifically, we employ a lightweight multi-layer perceptron (MLP) to estimate 
the importance of each prediction head, including three modality-specific predictions and 
a joint fusion prediction.Given the four prediction vectors, we first concatenate them into a 
combined vector, and this vector is passed through an MLP followed by a softmax layer to 
produce a set of normalized weights α ∈ R4:

	 z = [ŷa; ŷv; ŷt; ŷjoint], α = Softmax(MLP(z))� (22)

The final prediction ŷ is obtained via a weighted combination of all individual predictions:

	
ŷ =

4∑
i=1

αiŷ
(i), ŷ(i) ∈ {ŷa, ŷv, ŷt, ŷjoint}� (23)

This design allows the model to adaptively emphasize more reliable modality-specific or 
joint outputs under different input conditions.

In addition, we aggregate the modality-shared representations obtained from the dis-
entanglement module–which are not directly used in subsequent prediction steps–and use 
them to produce an auxiliary prediction. A consistency constraint is then applied between 
this auxiliary prediction and the final output.

	 ŷshared = FC(xs
a + xs

t + xs
v)� (24)

	 Lalign = MSE(ŷshared, ŷ)� (25)
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This constraint encourages the shared representations to preserve task-relevant semantics 
and align their predictive behavior with the final decision, thereby improving the robustness 
and interpretability of the shared feature space.

3.6  Overall learning objective

The final MSA output loss Ltask is defined as:

	
Ltask = 1

N

N∑
n=1

(ŷn − yn)2� (26)

where yn is the MSA label, n is the number of samples. And the total modal experts training 
loss Ltrain is defined as:

	
Ltrain =

∑
m∈{a,v,t}

∑
f∈{low,high}

MSE
(
y, ŷf

m

)
� (27)

The proposed framework integrates the decoupling loss Ldis, the modal experts training 
loss Ltrain, the shared consistency loss Lalign and the total MSA task loss Ltask to form 
the overall learning objective:

	 Ltotal = Ldis + Ltrain + Lalign + Ltask� (28)

4  Experiments

4.1  Datasets

We evaluate the proposed model on two widely used benchmark datasets: CMU-MOSI 
(Zadeh et al., 2016) and CMU-MOSEI (Zadeh et al., 2018).

CMU-MOSI  This dataset contains 2,199 monologue video segments of movie reviews, each 
accompanied by audio and visual streams sampled at 12.5 Hz and 15 Hz, respectively. The 
dataset is split into 1,284 training samples, 229 validation samples, and 686 testing samples.

CMU-MOSEI  As a larger-scale extension, this corpus consists of 22,856 video clips col-
lected from YouTube, with audio features sampled at 20 Hz and visual features at 15 Hz. 
It includes 16,326 training samples, 1,871 validation samples, and 4,659 testing samples. 
For both datasets, sentiment annotations range from −3 to +3, representing a fine-grained 
continuum from strongly negative to strongly positive emotions.

4.2  Evaluation metrics

Following prior studies (Wang et al., 2025b; Yang et al., 2023b), we adopt a comprehensive 
set of evaluation metrics to assess model performance, including binary accuracy (Acc-2), 
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F1 score, Pearson correlation coefficient (Corr) between predicted and ground-truth senti-
ment scores, and Mean Absolute Error (MAE). For binary accuracy, we report both nega-
tive/non-negative and negative/positive accuracies using the “−/−” notation, where the left 
value represents the former and the right value denotes the latter, ensuring a fair and detailed 
comparison across studies.

4.3  Implementation details

In this study, we follow the experimental settings of prior works (Wang et al., 2025b; Xu 
et al., 2024). All experiments are implemented in PyTorch and conducted on an NVIDIA 
RTX 3090 GPU with 24 GB memory. The model is trained with a batch size of 64 and a 
hidden dimension of 256, consistent with the feature dimension of both modality-specific 
and cross-modal attention embeddings. We employ the Adam optimizer with a learning 
rate of 0.0001 and run each experiment three times, reporting the average performance. For 
fair comparison, all pre-trained encoders in FEMF are identical to those used in MoMKE: 
DeBERTa-large for text, wav2vec-large for audio, and MA-Net for visual features, ensuring 
complete consistency across modalities.

4.4  Baselines

Self-MM (Yu et al., 2021b) performs joint unimodal and multimodal learning via a self-
supervised label module. MMIM (Han et al., 2021) enhances fusion by maximizing mutual 
information across modalities. CubeMLP (Sun et al., 2022) models cross-modal interactions 
using a cube-structured MLP. ConFEDE (Yang et al., 2023b) applies contrastive disentan-
glement and knowledge distillation for robust fusion. ALMT (Zhang et al., 2023) introduces 
language-guided adaptive modules to filter irrelevant signals. TMSON (Xie et al., 2024) 
models modality uncertainty via Gaussian fusion with ordinal sentiment space. HyDisc-
GAN (Wu et al., 2024) employs hybrid discriminators for global–local alignment. MoMKE 
(Xu et al., 2024) integrates unimodal and joint features through a soft routing strategy. 
DEVA (Wu et al., 2025) generates textual emotional descriptions from audio–visual cues 
for better semantic reasoning. MFMB-Net (Tao et al., 2025) adopts macro–micro fusion and 
modality reconstruction to improve robustness.

4.5  Performance comparison

As shown in Table 1, the proposed model achieves competitive or superior results across 
most evaluation metrics on both CMU-MOSI and CMU-MOSEI. Compared with prior 
state-of-the-art approaches, FEMF exhibits notable improvements in Pearson correlation, 
classification accuracy, and F1 score, reflecting a stronger alignment between predicted and 
ground-truth sentiment scores. These gains indicate that FEMF better captures nuanced sen-
timent dynamics within multimodal inputs.

Under both the negative/non-negative and negative/positive binary protocols, our model 
consistently achieves higher accuracies and F1 scores, demonstrating stronger discrimina-
tive capability and robustness across datasets. Compared with mutual-information or gener-
ative models such as Self-MM, MMIM, and HyDiscGAN, FEMF achieves more consistent 
improvements across both correlation and classification metrics. While confidence-aware 
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methods like ConFEDE and TMSON enhance robustness via uncertainty modeling and 
ordinal representations, FEMF further strengthens representation learning through the joint 
modeling of shared and modality-specific features under hierarchical supervision. Even rel-
ative to advanced semantic alignment or routing frameworks such as DEVA and MoMKE, 
FEMF maintains favorable overall performance, confirming its effectiveness in balancing 
fine-grained regression accuracy with robust classification in multimodal sentiment analysis.

4.6  Ablation study

4.6.1  Effects of different components

To evaluate the contribution of each component, we perform ablation studies by individu-
ally removing the Disentanglement Module (DTM), Frequency-Aware MoE (FAE), Modal-
ity-Interaction Module (MIM), Hierarchical Prediction Module (HPM), and five auxiliary 
objectives (Lalign, Lrec, Lcyc, Lorth, Lsim), while keeping the remaining architecture 
unchanged. The results are summarized in Tables 2 and 3.

Removing the DTM causes a clear decline across all metrics, confirming its role in 
generating informative and disentangled modality-specific representations. Excluding the 
FAE—thus omitting frequency decomposition and expert selection—leads to higher errors 
and weaker consistency, validating the benefit of frequency-aware modeling for capturing 
stable and transient emotional cues. Eliminating the MIM substantially reduces accuracy 
and correlation, showing that explicit inter-modal interaction modeling is essential for robust 
fusion. Removing the HPM and using single-stage prediction also degrades performance, 
highlighting the value of hierarchical supervision for complementary unimodal–multimodal 
learning and improved generalization.

Regarding auxiliary objectives, removing Lalign weakens shared-representation consis-
tency, while omitting Lrec or Lcyc moderately harms performance, underscoring their role 
in stable reconstruction and cross-modal coherence. Excluding Lorth increases redundancy 
between shared and private spaces, and dropping Lsim slightly reduces accuracy, indicating 
its contribution to high-level relational alignment.

Table 1  Performance comparison on CMU-MOSI and CMU-MOSEI datasets. “Acc-2” and “F1” are re-
ported as neg./non-neg. and neg./pos. respectively. Our model use the same feature extractors as MoMKE, 
including DeBERTa-large (text), wav2vec-large (audio), and MA-Net (visual)
Model CMU-MOSI CMU-MOSEI

MAE Corr Acc-2 F1 MAE Corr Acc-2 F1
Self-MM 0.713 0.798 84.0/86.0 84.4/86.0 0.539 0.753 83.8/85.2 83.7/85.1
MMIM 0.712 0.790 83.34/85.39 83.43/85.41 0.536 0.764 82.57/85.01 82.41/85.13
CubeMLP 0.755 0.772 80.76/82.32 81.77/84.23 0.537 0.761 82.36/85.23 82.61/85.04
ConFEDE 0.742 0.784 84.17/85.52 84.13/85.52 0.522 0.780 81.65/85.82 82.17/85.83
ALMT 0.712 0.793 83.97/85.82 84.05/85.86 0.530 0.774 81.54/85.99 81.05/86.05
TMSON 0.687 0.809 85.40/87.2 85.40/87.2 0.526 0.766 85.2/86.4 85.3/86.2
HyDiscGAN 0.749 0.782 84.1/86.7 83.7/86.3 0.533 0.761 81.9/86.3 82.1/86.2
MoMKE* 0.798 0.801 85.27/87.96 85.22/87.97 0.556 0.827 84.97/87.29 84.91/87.19
DEVA 0.73 0.787 84.4/86.29 84.48/86.3 0.541 0.769 83.26/86.13 82.93/86.21
MFMB-Net 0.709 0.798 82.7/85.70 83.2/86.00 0.532 0.758 84.7/85.10 85.0/85.10
Ours 0.758 0.828 85.48/88.37 85.32/88.36 0.553 0.831 85.23/87.6 85.41/87.54
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Overall, these findings confirm that both architectural components and auxiliary losses 
contribute uniquely and complementarily to the model’s final performance, validating the 
necessity and effectiveness of the full FEMF design.

4.6.2  Effects of different modalities

As shown in Table 4, the textual modality delivers the strongest unimodal performance, 
significantly surpassing the visual and auditory counterparts, which underscores the rich 
semantic information conveyed by language in emotion understanding. In the bimodal 
setting, combining any two modalities consistently improves performance over unimodal 
baselines, reflecting the complementary nature of multimodal cues. Furthermore, the tri-
modal configuration achieves the best overall results on both benchmarks, confirming that 
our framework effectively leverages heterogeneous yet complementary information. The 
progressive improvements from unimodal to bimodal and finally to trimodal fusion demon-
strate the robustness of our multimodal integration strategy in capturing cross-modal depen-
dencies and enhancing fine-grained sentiment discrimination.

4.7  Parameter sensitivity analysis

As illustrated in Fig. 4, we conduct a sensitivity analysis on three key parameters–the num-
ber of layers in the modality interaction module, the fusion weight α in the frequency-aware 

Model MAE Corr Acc-2 F1
Ours 0.553 0.831 85.23/87.6 85.41/87.54
w/o DTM 0.566 0.821 84.99/87.53 85.02/87.45
w/o FAE 0.557 0.828 84.81/87.41 84.87/87.38
w/o MIM 0.553 0.830 84.85/87.47 84.91/87.43
w/o HPM 0.556 0.829 84.93/87.46 84.89/87.42
w/o Lalign 0.555 0.828 84.96/87.51 84.98/87.41
w/o Lrec 0.553 0.83 85.01/87.56 84.93/87.49
w/o Lcyc 0.562 0.829 84.97/87.58 84.91/87.51
w/o Lorth 0.557 0.83 84.9/87.46 84.88/87.39
w/o Lsim 0.56 0.831 85.01/87.53 84.97/87.46

Table 3  Ablation study results on 
the CMU-MOSEI dataset
 

Model MAE Corr Acc-2 F1
Ours 0.758 0.828 85.48/88.37 85.32/88.36
w/o DTM 0.772 0.814 84.92/87.91 84.89/87.87
w/o FAE 0.802 0.817 85.09/88.01 85.06/88.00
w/o MIM 0.821 0.819 85.03/87.96 84.93/87.92
w/o HPM 0.779 0.828 84.94/88.11 84.90/88.07
w/o Lalign 0.787 0.827 85.39/88.27 85.21/88.26
w/o Lrec 0.772 0.827 85.41/88.33 85.29/88.33
w/o Lcyc 0.772 0.826 85.4/88.33 85.22/88.32
w/o Lorth 0.786 0.826 85.38/88.25 85.29/88.25
w/o Lsim 0.782 0.825 85.37/88.26 85.27/88.25

Table 2  Ablation study results on 
the CMU-MOSI dataset
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Mixture-of-Experts (MoE) branch, and the frequency truncation coefficient c−to examine 
their impact on model performance across CMU-MOSI and CMU-MOSEI.

For the number of layers (Fig. 4(a)), CMU-MOSI achieves the best performance with a 
single layer, while deeper architectures lead to slight degradation, likely due to overfitting 
or redundant modeling. CMU-MOSEI, with its larger data scale, exhibits greater stability 
across layer depths. Varying the fusion coefficient α (Fig. 4(b)) within [0.1, 0.9] shows an 
optimal value around 0.3, where assigning moderate emphasis to high-frequency compo-
nents yields stronger discriminative representations. Extreme values reduce performance, 
confirming the importance of balanced frequency fusion. Finally, the truncation coefficient 
c (Fig. 4(c)), which determines the cutoff between low- and high-frequency components 
in the Fourier-based decomposition, peaks at c = 0.6 on CMU-MOSI and around c = 0.4 
on CMU-MOSEI. This indicates that moderate retention of high-frequency information 
enhances sensitivity to fine-grained emotional cues, while larger and more diverse datasets 
remain less affected by the specific cutoff.

4.8  Modality interaction order analysis

To assess the impact of modality interaction order within each query-dominant branch of 
our modality-interaction module, we conduct an experiment exploring different sequential 
fusion paths among modalities, as illustrated in Fig. 5.

For the text-query branch, interacting with the audio modality first yields the best per-
formance across all metrics, indicating that early fusion with temporally aligned acoustic 
cues refines semantic grounding before integrating higher-level visual information. In the 
audio-query branch, the optimal order is A→T→V, showing that contextualizing audio with 

Table 4  Performance comparison of different modality combinations on CMU-MOSI and CMU-MOSEI 
datasets. T = Text modality, A = Audio modality, V = Visual modality

CMU-MOSI CMU-MOSEI
 Model MAE Acc-2 F1 MAE Acc-2 F1
T 0.762 87.25 87.19 0.564 86.99 86.97
A 1.482 54.93 55.02 0.883 72.48 71.80
V 1.409 60.91 60.89 0.908 69.45 68.76
T+A 0.771 87.49 87.46 0.558 87.28 87.22
T+V 0.852 88.01 88.02 0.563 87.13 87.06
A+V 1.373 61.43 61.45 0.868 72.52 71.73
T+A+V 0.758 88.37 88.36 0.553 87.60 87.54

Fig. 4  Parameter Sensitivity Analysis
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linguistic information enhances sentiment interpretation more effectively than initiating 
with less aligned visual features. For the visual-query branch, the V→T→A sequence con-
sistently outperforms its reverse, suggesting that incorporating textual context early helps 
disambiguate visual signals prior to adding acoustic nuances.

Overall, these findings reveal that the order of modality interaction plays a non-trivial 
role. The proposed multi-branch interaction module benefits from carefully designed fusion 
sequences, effectively capturing diverse and complementary cross-modal dependencies.

4.9  Robustness analysis under missing modalities

To evaluate model robustness under incomplete multimodal inputs, we conduct experiments 
where input features are randomly masked with missing rates ranging from 0% to 40%, 
simulating real-world conditions such as sensor failure or transmission noise.

As shown in Fig. 6, all models experience performance degradation as the missing rate 
increases, revealing the inherent difficulty of incomplete multimodal learning. However, our 
model exhibits a markedly slower decline in both F1 score and Pearson correlation com-
pared with representative baselines, demonstrating stronger resilience to modality loss. This 
robustness stems from the disentangled representation learning framework, which jointly 
captures complementary information from shared and modality-specific spaces, as well 
as from the confidence-aware fusion and hierarchical prediction strategy that adaptively 
emphasizes reliable modalities.

Fig. 5  Modality Interaction Order Analysis on MOSI

 

Fig. 6  Robustness Analysis under Missing Modalities
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Moreover, this robustness analysis also reflects the model’s data generalization capabil-
ity: FEMF maintains stable performance even with substantial modality absence, indicating 
strong adaptability under limited-data or few-shot conditions. The frequency-aware multi-
stage fusion mechanism further contributes to cross-modal alignment and enhances resis-
tance to noise or missing signals, underscoring the practicality of our approach in real-world 
multimodal scenarios.

4.10  Visualization analysis

To assess the effectiveness of our Fourier-aware Expert Modeling, we visualized the atten-
tion distributions from the high- and low-frequency branches across modalities (Fig. 7). 
The results show clear and modality-specific divergence: audio high-frequency components 
focus on prosodic shifts, while low-frequency ones capture the global tone; text high-fre-
quency branches attend to emotionally charged words, whereas low-frequency ones reflect 
stable semantic structures; visual high-frequency responses highlight local edges and rapid 
facial changes, while low-frequency responses capture overall appearance and scene con-
text. These complementary patterns confirm that the frequency-aware modeling enables 
adaptive and semantically meaningful attention allocation. To further clarify the semantic 
implication of the frequency decomposition, we note that high-frequency components cap-
ture transient and emotionally intense variations such as abrupt vocal or facial changes, 
while low-frequency components encode smoother and more stable emotional contours 
representing calm or sustained tones. This observation aligns with the intended design of 
the frequency-aware experts and supports the effectiveness of the proposed decomposition.

Fig. 7  Visualization of attention distributions from the low- and high-frequency branches across audio, 
text, and visual modalities. High-frequency features emphasize abrupt and emotionally intense cues (e.g., 
sudden intonation or facial muscle changes), whereas low-frequency features capture stable and context-
consistent patterns (e.g., calm tone or overall facial expression)
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5  Conclusion

In this paper, we proposed FEMF, a Frequency-Aware Experts with Multi-Stage Fusion 
framework for multimodal sentiment analysis. By incorporating frequency decomposition 
via Discrete Fourier Transform and expert modeling for high- and low-frequency compo-
nents, FEMF effectively captures both stable and transient emotional cues across modali-
ties. The integration of shared–private disentanglement, modality-interaction modules, and 
hierarchical predictions further enhances robustness and interpretability. Extensive experi-
ments on CMU-MOSI and CMU-MOSEI demonstrate consistent improvements over strong 
baselines, while ablation and robustness analyses confirm the contribution of each compo-
nent and the overall resilience of the architecture.

For future work, we aim to extend FEMF in several directions: (1) exploring adaptive 
spectral decomposition methods–such as wavelet and graph Fourier transforms–to bet-
ter model non-periodic or context-dependent modalities like text; (2) applying FEMF to 
broader multimodal affective datasets (e.g., CrisisMMD, MER2024) to assess cross-domain 
generalization; (3) integrating LLM-based semantic enrichment to enhance text-level 
affective reasoning; and (4) developing low-rank and parameter-efficient MoE variants 
for improved scalability. In addition, we plan to incorporate explicit dynamic weighting 
mechanisms among modalities in the future work to make the fusion process more adaptive 
and interpretable. Furthermore, we will investigate how frequency-aware and cross-modal 
semantic representations can help mitigate ethical and social biases inherent in pre-trained 
multimodal encoders, thereby promoting fairness in affective computing applications.
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